a2 United States Patent

Archer et al.

US009110803B2

US 9,110,803 B2
Aug. 18,2015

(10) Patent No.:
(45) Date of Patent:

(54) SOLVABLE EXCEPTIONS

(58) Field of Classification Search

CPC GOGF 11/3466; GOGF 11/3612; GOGF
11/3423; GOGF 11/348
USPC i 714/57

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0052149 Al*
2008/0295078 Al* 1
2010/0082151 Al*
2012/0089859 Al*

2/2008 Fischeretal. 705/10
1/2008 Stalletal. 717/125
4/2010 Youngetal. 700/226
4/2012 Wangetal.ccocoeeveennn 714/1

(71) Applicant: Verizon Patent and Licensing Inc.,
Arlington, VA (US)
(72) Inventors: Don G. Archer, Euless, TX (US); Matt
R. Bruce, Frisco, TX (US); William D.
York, Fort Worth, TX (US)
(73) Assignee: Verizon Patent and Licensing Inc.,
Basking Ridge, NJ (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 132 days.
(21) Appl. No.: 13/655,703
(22) Filed: Oct. 19, 2012
(65) Prior Publication Data
US 2014/0115385 Al Apr. 24, 2014
(51) Imt.ClL
GO6F 1107 (2006.01)
(52) US.CL
CPC ... GOG6F 11/0793 (2013.01); GO6F 11/0736

(2013.01)

% G

* cited by examiner
Primary Examiner — Jigar Patel

(57) ABSTRACT

A task unit included in an application is executed. The task
unit includes instructions for executing an application task.
An exception is thrown by the task unit. A program fragment
for resolving the exception is identified and used to obtain
user input to resolve the exception.

20 Claims, 3 Drawing Sheets

exception?
410

ore-
ground
request?

YES——>

Y
Dump pending tasks
465

US 9,110,803 B2

Sheet 1 of 3

Aug. 18, 2015

U.S. Patent

€ ‘814

LOT Ysel

¢ 514

LOT Ysel

(074
240315 eleq

00T

80T
JoA|0S
%
S0z S0¢ S0T S0T
(puhg) (0ss) (so1) % (v1n3)
Hun yseL jun ysel Nunsel Hun ysel
S0T S0T S0T S0T
(puhs) b (OSS) e (so1) £ (v1in3)
3N ysel HUn dse] Hun yseL 3un ysel
60T { | 60T i} 60T
jusWi jjusui fausaw
. -8eJd4} §-Seudi i -Seuq
814
- 80T J9A|0S L0
. (spseL
oTT {
STT Janias . e 901
;.,f JJOMION \ Amvn_n_,q
50T U1

U.S. Patent

400

Aug. 18, 2015

Catch exception
405

Solvable

Sheet 2 of 3

US 9,110,803 B2

exception?
410

YES
\ 4

Invoke solver
415

request? o

YES
y

Provide notification

NO 425

Choose fragment
435

Accepted?

<+—YES 430

v

Provide Solver Ul
440

Dismiss?
445

NO

\ 4

YES—»Y

Y

Dump pending tasks
465

Apply fragment
450

Solve?

455

YES
h 4

Re-queue pending tasks
460

Y

END

Fig. 5

U.S. Patent Aug. 18, 2015 Sheet 3 of 3 US 9,110,803 B2
SOO\E
Fragment System
109 level
510
Fragment Fragment Application
109 109 level
510
Fragment Fragment Fragment Fragment Task level
109 109 109 109 505

US 9,110,803 B2

1
SOLVABLE EXCEPTIONS

BACKGROUND INFORMATION

Computer applications often raise exceptions, or otherwise
halt execution, for a variety of reasons, including a failure to
receive expected or needed input. Unfortunately, when
expected input is not received, applications often lack mecha-
nisms for addressing an exception condition. For example, an
application may be lacking user information needed to pro-
ceed, but mechanisms for obtaining such information may be
lacking.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary system for handling solv-
able exceptions.

FIG. 2 is a block diagram of an exemplary task that may be
required by an application.

FIG. 3 is a block diagram of the exemplary task of FIG. 2
accessing a solver.

FIG. 4 is a flow diagram of an exemplary process for
invoking and using a solver.

FIG. 5 is a block diagram of a fragment hierarchy.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

FIG. 1 illustrates an exemplary system 100 for handling
solvable exceptions. The system 100 includes a client 105, the
client 105 in turn including one or more applications 106. The
applications 106 may in turn include and/or rely on one or
more tasks 107, which in turn may call a solver 108. The
solver 108 includes program fragments 109. When a task 107
encounters an exception, the solver 108 may be used to obtain
inputs to resolve the exception, so that the task 107, and the
application 106 that called or includes the task 107, may
continue processing. A client 105 may communicate, e.g., via
a network 110, with a server 115 and/or a data store 120.

A client 105 may be any one of a variety of computing
devices, such as a desktop computer, laptop computer, tablet
computer, smart phone, personal digital assistant, etc. In gen-
eral, a client 105 includes a memory and a processor, the
memory storing instructions executable by the processor,
e.g., instructions such as may be included in an application
106 or the solver 107, as well as instructions included in an
operating system or other code running on the client 105.

Applications 106, as just mentioned, generally include
instructions stored in the memory of client 105 and execut-
able by a processor. Applications 106 may include or may call
ontasks 107. In general, atask 107 is ahigh-level operation of
an application 106. As shown in FIGS. 2 and 3, discussed in
more detail below, a task 107 generally includes one or more
tasks units 205. Each task unit 205 may be a set of instructions
stored in a memory, and executable by a processor, of the
client 105. Examples of tasks 107 include processing a pay-
ment, synchronizing data, providing access to information,
e.g., a webpage, etc.

The solver 108 is generally a set of instructions stored in a
memory ofthe client 105, and executable by its processor. As
mentioned above, the solver 108 may be called by a task 107
when the task 107 encounters an exception. As described
further below, the solver 108 uses one or more fragments 109
to attempt to resolve an exception. For example, a fragment
109 may be a set of instructions stored in the memory of the
client 105, and executable by a processor, for obtaining user
input necessary to resolve an exception and to allow a task

15

20

25

40

45

55

2

107, and therefore an application 106, to continue processing.
As illustrated in FIG. 5 and discussed further below, frag-
ments 109 may be stored and/or accessed in a hierarchical
manner.

Network 110 is generally a packet network, and may incor-
porate one or more of a cellular network, the Internet, a wide
area network, a local area network, etc.

Server 115 may be a general-purpose computing device
including a memory and a processor, the memory storing
instructions executable by the processor, e.g., instructions for
carrying out steps and processes as disclosed herein.

Data store 120 may be a relational database or the like
included within server 115 or, more likely, within one or more
separate computing devices in communication with server
115.

FIG. 2 is a block diagram of an exemplary task 107. The
task 107 includes an exemplary set of task units 205. For
example, the task 107 could be called by an application 106
for the purpose of performing a synchronization operation.
Accordingly, a first task unit 205 could be configured to
confirm that a user of the application 106 accepted an end user
license agreement (EULA). The second task unit 205 could
be configured to confirm that an end-user had accepted terms
of service for a remote source of data being synchronized. A
third task unit 205 could be configured to perform a single
sign-on (SSO) authentication, e.g., by submitting informa-
tion to server 115 to confirm that a user of the application 106
had rights to access data requested to be synchronized. Fur-
ther, a fourth task unit 205 could be configured to perform the
synchronization of data, e.g., to synchronize data stored in an
application 106 with data stored in data store 120 associated
with the server 115. Each of the successive task units 205
following the first (EULA) task unit 205 in the task 107
executes following completion of the prior task. That is, in
this example, terms of service are not checked until the EUL A
is verified. SSO authentication is not performed until the
terms of service are verified, and synchronization is not per-
formed until SSO authentication is successfully completed.

FIG. 3 is a block diagram of the exemplary task of FIG. 2
accessing the solver 108. In this example, a EULA task unit
205 verifies that auser has accepted the EULA, but a terms of
service task unit 205 encounters an exception when attempt-
ing to verify a user has accepted terms of service. Accord-
ingly, the task unit invokes the solver 108, which resolves the
exception, generally according to instructions included in a
fragment 109 accessed by the solver 108; in this example, a
fragment 109 provides instructions for presenting the user
with an interface requesting that the user review and accept
the terms of service, and then recording the user’s acceptance
of the terms of service, whereupon the solver 108 returns
execution to the SSO task unit 205, which proceeds as
described above.

FIG. 4 is a flow diagram of an exemplary process 400 for
invoking and using the solver 108. The process 400 begins in
a step 405, in which a task unit 205 catches an exception. For
example, as stated above, a user may not have accepted an
End User License Agreement or Terms of Service,

Next, in a step 410, the task unit 205 determines whether
the exception is a solvable exception. In general, a task unit
205 makes this determination based on whether the exception
thrown is identified as a “solvable exception,” e.g., includes
an identifier indicating a solvable exception, or is some other
exception. If the exception is not a somewhat exception, then
the process 400 ends. Otherwise, a step 415 is executed next.

In step 415, the task unit 205 that threw the exception in
step 410 invokes the solver 108.

US 9,110,803 B2

3

Next, in a step 420, the solver 108 determines whether the
invoking task unit 205 was requesting input from a fore-
ground user interface, or whether the task unit 205 was
executing as a background service. A foreground user inter-
face is a user interface, generally a graphical user interface
(GUI) that presents data and/or request input from a user. For
example, a form for inputting data may be included in a
foreground user interface. In contrast, a background process
may periodically synchronize or fetch data, or perform a
variety of other tasks, without presenting any interface, or
providing a notification, to a user, at least assuming no excep-
tion is thrown. If the task unit 205 invoking the solver was
executing a foreground request, then step 435 is executed
next. Otherwise, the task unit 205 was executing a back-
ground request, in step 425 is executed next. When imple-
mented on certain operating systems, step 420 may be
skipped. For example, Apple Corporation’s 10S does not
include background services. Thus, if client 105 is using iOS,
the process 400 may proceed directly from step 415 to step
435.

In any case, in step 425, the solver 108 causes a notification
of'the exceptionto be provided to a user, e.g., via a pop-up box
or the like in a GUI of the client 105. Generally, the notifica-
tion informs the user of the exception, and may describe steps
to be taken, e.g., data be provided such as a password, user-
name, etc., to resolve the exception. The notification also
generally provides a mechanism for the user to indicate
acceptance of the notification, i.e., to proceed to resolve the
exception.

Following step 425, in step 430, the solver 108 determines
whether user input has been received indicating acceptance of
the notification. If yes, step 435 is executed next. Otherwise,
the process 400 proceeds to step 465, discussed below. In
some cases, a user may provide an indication to ignore a
notification, e.g., by providing an input to ignore a notifica-
tion, or by failing to provide input to accept the notification
within a predetermined period of time.

Instep 435, the solver 108 selects a fragment 109 to attempt
to resolve the exception. As mentioned above and as shown in
FIG. 5, fragments 109 may be stored and/or accessed in a
hierarchical manner. Further, fragments 109 may be stored
and/or accessed in other ways, including ???? FIG. 5 is a
block diagram of a fragment hierarchy 500. In the hierarchy
500, which may be maintained in metadata associated with a
set of fragments 109 stored in a storage unit such as a file
system, a relation data store, etc., a task level 505 includes
fragments 109 respectively associated with one or more par-
ticular task units 205. An application level 510 includes frag-
ments 109 associated with particular applications 106. Thus,
application 106 could have various requirements for receiv-
ing certain user information, e.g., a phone number, e-mail
address, etc. Accordingly, an application level 510 fragment
109 could be provided for use with all task units 205 request-
ing such information, or in case certain task units 205
required such information but did not have their own task
level 505 fragments 109 associated with them. Similarly, a
system level 515 includes fragments 109 intended to be
generic for all applications included in a computing system.
System level 515 may sometimes be referred to as an operat-
ing system level, and system level 515 fragments could be
included in an operating system.

In any case, solver 108 generally attempts to select a frag-
ment 109 that is as appropriate as possible for resolving an
exception thrown by a particular task unit 205. This, if the
solver 108 can locate a fragment 109 that is specifically
associated with the task unit 205 that has thrown the excep-
tion, then that fragment 109 is used. However, if no fragment

10

15

20

25

30

35

40

45

50

55

60

65

4

109 specifically associated with the task unit is available, then
the solver 108 may look for a fragment 109 that operates at a
more generic level to resolve the exception. When a fragment
109 for resolving the exception is found, the process 400
continues to a step 440.

Thus, following step 435, in step 440, the solver 108 pro-
vides a solver user interface for a user to provide input to
resolve the exception. For example, the user may be requested
to enter a username, password, or the like, or may be
requested to accept or decline a license, etc. Further, a user
may be provided with a “cancel” button or the like to dismiss
the solver.

Next, in step 445, the solver 108 determines whether input
has been received to dismiss the solver 108. If so, step 465 is
executed next. Otherwise, step 450 is executed next.

In step 450, the solver 108 applies the fragment selected in
step 435. For example, the solver may provide information,
e.g., log in information, acceptance ofa EULA or ToS, etc., to
the task unit 205 that threw an exception.

Following step 450, in step 455, the solver 108 determines
whether the exception has been resolved, e.g., whether
requirements for login information, acceptance of a EULA or
ToS, etc, have been met for the application 106. If so, process
400 proceeds to step 460. Otherwise, step 465 is executed
next.

In step 460, solver 108 re-queues task units 205 pending in
the task 107 that invoked the solver 108. Following step 460,
the process 400 ends.

In step 465, which may follow either step 430 or step 455,
the solver 108 dumps any task units queued for execution in
the task 107 that invoked the solver 108. Following step 465,
process 400 ends.

Computing devices such as those disclosed herein may
employ any of a number of computer operating systems,
including, but by no means limited to, versions and/or vari-
eties of the Microsoft Windows® operating system, the i0S
by Apple Computer, Inc., Android by Google, Inc., the Unix
operating system (e.g., the Solaris® operating system distrib-
uted by Sun Microsystems of Menlo Park, Calif.), the AIX
UNIX operating system distributed by International Business
Machines (IBM) of Armonk, New York, and the Linux oper-
ating system. Computing devices in general may include any
one of a number of computing devices, including, without
limitation, a computer workstation, a desktop, notebook, lap-
top, or handheld computer, or some other computing device.

Computing devices such as disclosed herein further gener-
ally each include instructions executable by one or more
computing devices such as those listed above. Computer-
executable instructions may be compiled or interpreted from
computer programs created using a variety of programming
languages and/or technologies, including, without limitation,
and either alone or in combination, Java™, C, C++, Visual
Basic, Java Script, Perl, etc. In general, a processor (e.g., a
microprocessor) receives instructions, e.g., from a memory, a
computer-readable medium, etc., and executes these instruc-
tions, thereby performing one or more processes, including
one or more of the processes described herein. Such instruc-
tions and other data may be stored and transmitted using a
variety of computer-readable media. A file in a computing
device is generally a collection of data stored on a computer
readable medium, such as a storage medium, a random access
memory, etc.

A computer-readable medium includes any medium that
participates in providing data (e.g., instructions), which may
be read by a computer. Such a medium may take many forms,
including, but not limited to, non-volatile media, volatile
media, etc. Non-volatile media include, for example, optical

US 9,110,803 B2

5

or magnetic disks and other persistent memory. Volatile
media include dynamic random access memory (DRAM),
which typically constitutes a main memory. Common forms
of computer-readable media include, for example, a floppy
disk, a flexible disk, hard disk, magnetic tape, any other
magnetic medium, a CD-ROM, DVD, any other optical
medium, punch cards, paper tape, any other physical medium
with patterns of holes, a RAM, a PROM, an EPROM, a
FLASH-EEPROM, any other memory chip or cartridge, or
any other medium from which a computer can read.

Databases or data stores described herein may include
various kinds of mechanisms for storing, accessing, and
retrieving various kinds of data, including a hierarchical data-
base, a set of files in a file system, an application database in
a proprietary format, a relational database management sys-
tem (RDBMS), etc. Each such database or data store is gen-
erally included within a computing device employing a com-
puter operating system such as one of those mentioned above,
and are accessed via a network in any one or more of a variety
of manners. A file system may be accessible from a computer
operating system, and may include files stored in various
formats. An RDBMS generally employs Structured Query
Language (SQL) in addition to a language for creating, stor-
ing, editing, and executing stored procedures, such as the
PL/SQL language mentioned above. Database 115 may be
any ofa variety of known RDBMS packages, including IBMS
DB2, or the RDBMS provided by Oracle Corporation of
Redwood Shores, Calif. In one implementation, database 115
is SQLite, which runs on the iOS and Android operating
systems.

With regard to the processes, systems, methods, heuristics,
etc. described herein, it should be understood that, although
the steps of such processes, etc. have been described as occur-
ring according to a certain ordered sequence, such processes
could be practiced with the described steps performed in an
order other than the order described herein. It further should
be understood that certain steps could be performed simulta-
neously, that other steps could be added, or that certain steps
described herein could be omitted. In other words, the
descriptions of processes herein are provided for the purpose
of illustrating certain embodiments, and should in no way be
construed so as to limit the claimed invention.

Accordingly, it is to be understood that the above descrip-
tion is intended to be illustrative and not restrictive. Many
embodiments and applications other than the examples pro-
vided would be apparent to those of skill in the art upon
reading the above description. The scope of the invention
should be determined, not with reference to the above
description, but should instead be determined with reference
to the appended claims, along with the full scope of equiva-
lents to which such claims are entitled. It is anticipated and
intended that future developments will occur in the arts dis-
cussed herein, and that the disclosed systems and methods
will be incorporated into such future embodiments. In sum, it
should be understood that the invention is capable of modifi-
cation and variation and is limited only by the following
claims.

All terms used in the claims are intended to be given their
broadest reasonable constructions and their ordinary mean-
ings as understood by those skilled in the art unless an explicit
indication to the contrary in made herein. In particular, use of
the singular articles such as “a,” “the,” “said,” etc. should be
read to recite one or more of the indicated elements unless a
claim recites an explicit limitation to the contrary.

10

25

40

45

60

What is claimed is:
1. A method, comprising:

executing, in a computing device having a processor and a
memory, a task unit included in an application that
includes instructions for executing an application task;

receiving an exception thrown by the task unit;

identifying a program fragment for resolving the exception
by searching a hierarchy of program fragments using a
first search for a task level fragment associated with the
task unit that threw the exception and, if the task level
fragment is not found, using a second search for at least
one of an application level fragment associated with the
application and a system level fragment associated with
an operating system of the computing device; and

using the identified program fragment to obtain user input
to resolve the exception;

wherein the application includes a high-level operation
having at least one of a user agreement, data synchroni-
zation, and access authentication, such that the identified
program fragment comprises a solver program that is
stored in the memory and accessible therefrom when the
exception is received and automatically to be executed
by the processor to attempt to resolve the exception
according to the identified at least one of the task level
fragment, application level fragment, and system level
fragment, thereby enabling continued processing of the
high-level operation automatically when the solver pro-
gram resolves the exception.

2. The method of claim 1, further comprising determining
that the exception is a solvable exception, the processor gen-
erating a solvable exception identifier that indicates automati-
cally that the exception thrown is pre-determined to be solv-
able, and, if the exception is not a solvable exception,
providing a notification that the exception cannot be solved.

3. The method of claim 1, further comprising:

determining that the exception was thrown by a back-
ground application;

requesting a user indication to resolve the exception;

and identifying the fragment only after receiving the user
indication.

4. The method of claim 1, further comprising:

determining that the exception was thrown by a back-
ground application;

requesting a user indication concerning whether the excep-
tion should be resolved or ignored;

receiving a user indication to ignore the exception; and

dumping all pending application tasks.

5. The method of claim 1, wherein at least one program
fragment is identified by the processor for automated excep-
tion resolution by the processor automatically running the at
least one program fragment to obtain user input to process the
exception resolution, and thereby enable the application task
to continue processing.

6. The method of claim 1, wherein searching the hierarchy
of program fragments includes the first search for the task
level fragment, the second search for the application level
fragment, and a third search for the system level fragment.

7. The method of claim 1, further comprising:
determining that the exception has been resolved; and

re-queuing pending tasks in the application.

US 9,110,803 B2

7
8. A system, comprising:
a computing device that includes a processor and a
memory, the memory storing instructions executable by
the processor to provide operations comprising:
executing, in a computing device having a processor and
a memory, a task unit included in an application that
includes instructions for executing an application
task;

receiving an exception thrown by the task unit;

identifying a program fragment for resolving the excep-
tion by searching a hierarchy of program fragments
using a first search for a task level fragment associated
with the task unit that threw the exception and, if the
task level fragment is not found, using a second search
for at least one of an application level fragment asso-
ciated with the application and a system level frag-
ment associated with an operating system of the com-
puting device; and

using the identified program fragment to obtain user
input to resolve the exception;

wherein the application includes a high-level operation
having at least one of a user agreement, data synchro-
nization, and access authentication, such that the
identified program fragment comprises a solver pro-
gram that is stored in the memory and accessible
therefrom when the exception is received and auto-
matically to be executed by the processor to attempt to
resolve the exception according to the identified at
least one of the task level fragment, application level
fragment, and system level fragment, thereby
enabling continued processing of the high-level
operation automatically when the solver program
resolves the exception.

9. The system of claim 8, the operations further comprising
determining that the exception is a solvable exception,
wherein the processor generates a solvable exception identi-
fier that indicates automatically that the exception thrown is
pre-determined to be solvable, and, if the exception is not a
solvable exception, providing a notification that the exception
cannot be solved.

10. The system of claim 8, operations further comprising:

determining whether the exception was thrown by a back-
ground application;

requesting a user indication to resolve the exception;

identifying the program fragment only if the user indicates
to resolve the exception; and

dumping all pending application tasks if the user indicates
to ignore the exception.

11. The system of claim 8, wherein at least one program
fragment is identified by the processor for automated excep-
tion resolution by the processor automatically running the at
least one program fragment to obtain user input to process the
exception resolution, and thereby enable the application task
to continue processing.

12. The system of claim 8, wherein searching the hierarchy
of program fragments includes the first search for the task
level fragment, the second search for the application level
fragment, and a third search for the system level fragment.

13. The system of claim 8, the operations further compris-
ing:

determining that the exception has been resolved; and

re-queuing pending tasks in the application.

14. A non-transitory computer-readable storage medium
tangibly embodying computer-executable instructions, the

5

10

15

20

25

30

35

40

45

50

55

60

8

instructions when executed by a processor providing opera-
tions comprising:
executing, in a computing device having a processor and a
memory, a task unit included in an application that
includes instructions for executing an application task;

receiving an exception thrown by the task unit;

identifying a program fragment for resolving the exception
by searching a hierarchy of program fragments using a
first search for a task level fragment associated with the
task unit that threw the exception and, if the task level
fragment is not found, using a second search for at least
one of an application level fragment associated with the
application and a system level fragment associated with
an operating system of the computing device; and

using the identified program fragment to obtain user input
to resolve the exception;

wherein the application includes a high-level operation

having at least one of a user agreement, data synchroni-
zation, and access authentication, such that the identified
program fragment comprises a solver program that is
stored in the memory and accessible therefrom when the
exception is received and automatically to be executed
by the processor to attempt to resolve the exception
according to the identified at least one of the task level
fragment, application level fragment, and system level
fragment, thereby enabling continued processing of the
high-level operation automatically when the solver pro-
gram resolves the exception.

15. The medium of claim 14, the operations further com-
prising determining that the exception is a solvable exception,
wherein the processor generates a solvable exception identi-
fier that indicates automatically that the exception thrown is
pre-determined to be solvable, and, if the exception is not a
solvable exception, providing a notification that the exception
cannot be solved.

16. The medium of claim 14, the operations further com-
prising:

determining that the exception was thrown by a back-

ground application;

requesting a user indication to resolve the exception;

and identifying the fragment only after receiving the user

indication.

17. The medium of claim 14, the operations further com-
prising:

determining that the exception was thrown by a back-

ground application;

requesting a user indication concerning whether the excep-

tion should be resolved or ignored;

receiving a user indication to ignore the exception; and

dumping all pending application tasks.

18. The medium of claim 14, wherein at least one program
fragment is identified by the processor for automated excep-
tion resolution by the processor automatically running the at
least one program fragment to obtain user input to process the
exception resolution, and thereby enable the application task
to continue processing.

19. The medium of claim 14, wherein searching the hier-
archy of program fragments includes the first search for the
task level fragment, the second search for the application
level fragment, and a third search for the system level frag-
ment.

20. The medium of claim 14, the operations further com-
prising:

determining that the exception has been resolved; and

re-queuing pending tasks in the application.

#* #* #* #* #*

